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Abstract

We thank M. Wagner for his critique of our paper “Linear
transformation from full-band to sub-band cepstrum” (in Proc.
18" Australasian International Conference on Speech Science
and Technology (SST2022)). We also thank the Executive
Committee of the SST2024 Conference for the invitation to
respond. This rejoinder considers four central points from the
critique as follows: (i) The “sub-band cepstrum” approach
dating to the 1990s is recalled and contrasted with our 2022
approach; (ii) The spectral representation directly relevant to
our approach is highlighted; (iii) Our mathematical formulation
is further justified; (iv) Our choice of certain terms is discussed.

Index Terms: Cepstrum, full band, sub-band, band-limited,
linear transformation, Fourier series.

1. On the “sub-band cepstrum”

The impetus for sub-band processing of speech arose from
psychoacoustic work [1] in the 1950s and [2] in the 1990s, both
postulating that the human auditory system decodes the
linguistic message separately in different spectral sub-bands. It
is this frequency-local mechanism which inspired the idea of
increasing robustness in automatic speech recognition by de-
emphasising noise-corrupted sub-bands. Its implementation
promoted [3-4] also in the 1990s, involves splitting the full-
band’s frequency range into multiple sub-bands, extracting
their own acoustic features independently, and then building
statistical models to detect the noise-affected sub-bands.

Fig. 1(a) gives a schematic description of this sub-band
approach applied to the cepstrum. We refer to it as the existing
approach. For any frame of the speech signal, standard spectral
analysis (via FFT or filter banks) is performed to obtain the log-
magnitude spectrum (LMS) over the full band. Sub-bands are
selected by matching lower and upper limits [w4, w,] with the
closest frequency bins of the corresponding LMS sub-regions.

The Discrete Cosine Transform (DCT) is a standard step [5:
p 642] for converting either the entire LMS into the full-band
cepstrum, or a sub-region of the LMS into the “sub-band
cepstrum”. This term was first coined [5: p. 642] in 1998 as far
as we can ascertain, then mentioned [6: Fig. 1] in 1999 and [7:
p. 242] in 2000. The DCT outputs in Fig. 1(a) are vectors of
sub-band cepstral coefficients (CCs) whose size must be finite
in practice. There are still no definite recommendations for
determining the appropriate vector size per sub-band.

Fig. 1(b) gives a schematic description of our approach [8],
which also seeks to access local spectral information using the

sub-band cepstrum. The major difference is that our sub-band
CCs are derived from full-band CCs via a linear transformation.
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Figure 1: Two approaches for generating sub-band
cepstral coefficients (CCs): (a) the existing approach
dating back 30 years; (b) our 2022 approach.
Notations: {C} represents a vector of CCs; the
subscripts “sb” and “'fb” indicate sub-band and full
band, respectively, “'fs” denotes the signal’s sampling
frequency; the full band ranges from 0 to fs/2 (Hz) or
from 0 to © (radians); w, and w, are parameters for
the lower and upper frequency limits of a sub-band.

It is worth noting the flexibility and efficiency advantages in
our approach: (a) The DCT operation is performed once to
obtain the full-band CCs; (b) These are re-used every time a
new sub-band is selected; (¢) The parametric formulation of the
linear transformation enables the easy selection of any sub-
band’s frequency limits; (d) The minimum size for a vector of
sub-band CCs depends on the fraction of the full-band’s
frequency range occupied by a sub-band’s width [8: p. 137]. In
Section 2, we explain our motivation for qualifying our sub-
band CCs as “band-limited”.



2. On our mathematical formulation

Section 2.3 of the critique argues that the mathematical basis of
our approach is incorrect. We beg to differ and, in response, we
recall our key equations, clarify their respective roles, provide
a verification of their validity, and discuss the choice of certain
terms. Note that the recalled equations carry their original
numbers and, therefore, they appear below neither in sequential
order nor necessarily in the same order as they do in [8].

2.1. Spectral representations and terminology

The LMS, denoted for example as log|X (w)|?, is our starting
point as shown in Fig. 1a) from the critique and in Fig. 2(a)
below. Our focus however is the cepstral representation of the
LMS formulated in Eq (1), where S(w) % log|X(w)|? is an
even function of w for real signals such as speech. That is, all
necessary spectral information is already contained within the
positive frequencies. The LMS can thus be expanded [9: Ch. 7;
10: p. 429; 11: p. 163] as a Fourier-cosine series of CCs,
hereafter called the full-band Cj, across [0, 7).

The cepstrally-smoothed spectrum (or envelope) based on
Eq. (1) is overlaid on the full-band LMS in Fig. 2(a). Its shape
is determined by the Cpsg, and its smoothness results from
truncating the cosine series after M terms. The zeroth-order
coefficient C—q over the full band is usually excluded.
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Figure 2: (a) Overlaid: LMS obtained using FFT (black
solid line), and cepstrally-smoothed envelope over the
full band [0, 5000] Hz based on Eq. (1) and M = 14
(dashed blue line); (b) Overlaid: same cepstrally-
smoothed envelope as in (a), and a “band-limited” (red
solid line) section of the full-band envelope.

Fig. 2(b) gives a visual illustration to clarify our approach.
The marked sub-band interval is seen to contain a band-limited
section of the full-band envelope, from which follows our
assumption of a relation between sub-band and full-band CCs.
This contrasts with the existing approach which generates sub-
band CCs by applying the DCT to every selected sub-region of
the LMS without direct reference to the full-band domain.

We have thus chosen the term band-limited CCs (or BLCCs)
to reflect our shift of perspective from the existing approach,
and proposed Eq. (5) to represent S(w) over a sub-band interval
[w1, w,] in a manner analogous to Eq. (1).

S(w(@)) =Ch+3¥N,Clcos(lw'), 0<w' <7 (5)

Our sub-band CCs are the coefficients C; of the series in Eq.
(5), where C;_, accounts for a possibly non-zero, average level
of'a sub-band. The series’ upper bound N is set at about M X W
(or MW in short), where M is the vector size for the full-band
Cy, and W the ratio of the sub-band’s width to the full frequency
range. Sections 4.2 and 4.3 of [8] give empirical evidence that
MW -truncated series can only approximate the shape of the
spectral envelope within sub-bands. This is why we have stated
that our sub-band cepstrum is “estimated” from the full-band
cepstrum, albeit with sufficient accuracy for practical purposes.

2.2. Change of variables w - '

Our mathematical problem involves two frequency intervals:
[w1, w,] for the sub-band and [0, 7] for the full band, the former
being interior to the latter. To obtain our Fourier-cosine series
representation on [w;, w;], a change of variables w = w' is
introduced and a one-to-one mapping is established between the
w-axis and the w'-axis. This is a standard procedure [12: pp.
82-85; 13: pp. 286-287] for handling intervals other than [0, 7r].
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Note that ' stretches the sub-band interval [wq, w;] to the
full range [0, ] and, by writing Eq. (2) as Eq. (3), w is recast
as the sub-band dependent function w(w"). Our sub-band C; are
then derived via the (well-established) inverse Fourier-cosine
formulae in Eqs (6) and (7), where S(w(w")) is replaced by the
full-band expansion in Eq. (1) and w by Eq. (3):
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2.3. Mathematical verification

Evaluating Eqs (6)-(7) yields Eq. (10) where sub-band and full-
band CCs are related to one another through a weighted linear
sum or a linear transformation in matrix form. The weight
vectors a, in Eqs (11a)-(11c) are trigonometric functions of w4
and w,:

Cl, = Z¥=1 ayC, 1=01,..,N (10)

e, 10, 12kew = Bu[(—D* sin(kw,) + sin(kw,)] (11a)

Ak, 150, 1=kw = €0s(kwy) (11b)

Ak, 1=0 = yi[sin(kw,) — sin(kw,)] (11¢c)
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where B, = w = [—(mz;ml)]
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It can easily be verified that C] = C;, for [w,, w,] = [0, 7].

3. Summary

We agree that the context of our SST2022 paper [8] would have
been more complete with relevant literature on the sub-band
cepstrum. We have therefore made a diligent attempt to rectify
this in Section 1 above. We have also paid attention to central
points raised against our mathematical formulation. We believe
that the formulation of our sub-band approach continues to hold
in the light of additional information offered in this response.



4. Acknowledgements

We thank the reviewers for their comments and suggestions.

(1]

[11]
[12]

[13]

5. References

H. Fletcher, Speech and Hearing in Communication, (New York:
Krieger), 1953.

J.B. Allen, “How do humans process and recognize speech?”
IEEE Trans. on Speech & Audio Processing, 1994, pp. 567-577.
H. Hermansky, S. Tibrewala and M. Patel, “Towards ASR on
partially corrupted speech,” in Proc. 4" Int. Conf. on Spoken
Language Processing (ICSLP 96), 1996, pp. 1579-1582.

S. Tibrewala and H. Hermansky, “Sub-band based recognition of
noisy speech”, in Proc. Int. Conf- on Acoustics, Speech & Signal
Processing, 1997, pp. 1255-1258.

S. Okawa, E. Bocchieri and A. Potamianos, “Multi-band speech
recognition in noisy environments”, in Proc. Int. Conf. Acoustics,
Speech & Signal Processing, 1998, pp. 641-644.

K. Yoshida, K. Takagi and K. Ozeki, “Speaker identification
using subband HMMS”, in Proc. 6" European Conf. Speech
Communication & Tech. (Eurospeech’99), 1999, pp. 1019-1022.
P.M. McCourt, S.V. Vaseghi and B. Doherty, “Multi-resolution
sub-band features and models for HMM-based phonetic
modelling”, Computer Speech & Language, 2000, pp. 241-259.
F. Clermont, “Linear transformation from full-band to sub-band
cepstrum,” in, Proc.18" Australasian Int. Conf. on Speech
Science & Technology, 2022, pp. 136-140.

L.R. Rabiner and R.W. Schafer, Digital Processing of Speech
Signals, (New Jersey: Prentice-Hall), 1978.

K. Shikano and F. Itakura, “Spectrum distance measures for
speech recognition, in S. Furui and M.M. Sondhi (Eds), Advances
in Speech Signal Processing, (New York: Marcel Dekker), 1992,
pp. 419-451.

L. Rabiner and B.-H. Juang, Fundamentals of Speech
Recognition, (New Jersey: Prentice-Hall), 1993.

J.W. Brown and R.V. Churchill, Fourier Series and Boundary
Value Problems (5" ed.), (New York: McGraw-Hill), 1993.

J. Makhoul, “Spectral linear prediction: Properties and
applications”, [EEE Trans. on Acoustics, Speech & Signal
Processing, 1975, pp. 283-296.



