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Abstract 

We thank M. Wagner for his critique of our paper “Linear 

transformation from full-band to sub-band cepstrum” (in Proc. 

18th Australasian International Conference on Speech Science 

and Technology (SST2022)). We also thank the Executive 

Committee of the SST2024 Conference for the invitation to 

respond. This rejoinder considers four central points from the 

critique as follows: (i) The “sub-band cepstrum” approach 

dating to the 1990s is recalled and contrasted with our 2022 

approach; (ii) The spectral representation directly relevant to 

our approach is highlighted; (iii) Our mathematical formulation 

is further justified; (iv) Our choice of certain terms is discussed. 

 

Index Terms: Cepstrum, full band, sub-band, band-limited, 

linear transformation, Fourier series. 

1. On the “sub-band cepstrum” 

The impetus for sub-band processing of speech arose from 

psychoacoustic work [1] in the 1950s and [2] in the 1990s, both 

postulating that the human auditory system decodes the 

linguistic message separately in different spectral sub-bands. It 

is this frequency-local mechanism which inspired the idea of 

increasing robustness in automatic speech recognition by de-

emphasising noise-corrupted sub-bands. Its implementation 

promoted [3-4] also in the 1990s, involves splitting the full-

band’s frequency range into multiple sub-bands, extracting 

their own acoustic features independently, and then building 

statistical models to detect the noise-affected sub-bands. 

     Fig. 1(a) gives a schematic description of this sub-band 

approach applied to the cepstrum. We refer to it as the existing 

approach. For any frame of the speech signal, standard spectral 

analysis (via FFT or filter banks) is performed to obtain the log-

magnitude spectrum (LMS) over the full band. Sub-bands are 

selected by matching lower and upper limits [𝜔1, 𝜔2] with the 

closest frequency bins of the corresponding LMS sub-regions. 

     The Discrete Cosine Transform (DCT) is a standard step [5: 

p 642] for converting either the entire LMS into the full-band 

cepstrum, or a sub-region of the LMS into the “sub-band 

cepstrum”. This term was first coined [5: p. 642] in 1998 as far 

as we can ascertain, then mentioned [6: Fig. 1] in 1999 and [7: 

p. 242] in 2000. The DCT outputs in Fig. 1(a) are vectors of 

sub-band cepstral coefficients (CCs) whose size must be finite 

in practice. There are still no definite recommendations for 

determining the appropriate vector size per sub-band.  

     Fig. 1(b) gives a schematic description of our approach [8], 

which also seeks to access local spectral information using the 

 

sub-band cepstrum. The major difference is that our sub-band 

CCs are derived from full-band CCs via a linear transformation. 
 

 

Figure 1: Two approaches for generating sub-band 

cepstral coefficients (CCs): (a) the existing approach 

dating back 30 years; (b) our 2022 approach. 

Notations: {C} represents a vector of CCs; the 

subscripts “sb” and “fb” indicate sub-band and full 

band, respectively; “fs” denotes the signal’s sampling 

frequency; the full band ranges from 0 to fs/2 (Hz) or 

from 0 to 𝜋 (radians); 𝜔1 and 𝜔2 are parameters for 

the lower and upper frequency limits of a sub-band. 

   It is worth noting the flexibility and efficiency advantages in 

our approach: (a) The DCT operation is performed once to 

obtain the full-band CCs; (b) These are re-used every time a 

new sub-band is selected; (c) The parametric formulation of the 

linear transformation enables the easy selection of any sub-

band’s frequency limits; (d) The minimum size for a vector of 

sub-band CCs depends on the fraction of the full-band’s 

frequency range occupied by a sub-band’s width [8: p. 137]. In 

Section 2, we explain our motivation for qualifying our sub-

band CCs as “band-limited”. 



 

 

2. On our mathematical formulation 

Section 2.3 of the critique argues that the mathematical basis of 

our approach is incorrect. We beg to differ and, in response, we 

recall our key equations, clarify their respective roles, provide 

a verification of their validity, and discuss the choice of certain 

terms. Note that the recalled equations carry their original 

numbers and, therefore, they appear below neither in sequential 

order nor necessarily in the same order as they do in [8]. 

2.1. Spectral representations and terminology 

The LMS, denoted for example as 𝑙𝑜𝑔|𝑋(𝜔)|2, is our starting 

point as shown in Fig. 1a) from the critique and in Fig. 2(a) 

below. Our focus however is the cepstral representation of the 

LMS formulated in Eq (1), where 𝑆(𝜔) ≝ 𝑙𝑜𝑔|𝑋(𝜔)|2 is an 

even function of 𝜔 for real signals such as speech. That is, all 

necessary spectral information is already contained within the 

positive frequencies. The LMS can thus be expanded [9: Ch. 7; 

10: p. 429; 11: p. 163] as a Fourier-cosine series of CCs, 

hereafter called the full-band 𝐶𝑘 across [0, 𝜋]. 
     The cepstrally-smoothed spectrum (or envelope) based on 

Eq. (1) is overlaid on the full-band LMS in Fig. 2(a). Its shape 

is determined by the 𝐶𝑘>0, and its smoothness results from 

truncating the cosine series after 𝑀 terms. The zeroth-order  

coefficient 𝐶𝑘=0 over the full band is usually excluded. 

 

𝑆(𝜔) ≅ ∑ 𝐶𝑘
𝑀
𝑘=1 cos(𝑘𝜔) ,    0 ≤ 𝜔 ≤ 𝜋                         (1)     

 

Figure 2: (a) Overlaid: LMS obtained using FFT (black 

solid line), and cepstrally-smoothed envelope over the 

full band [0, 5000] Hz based on Eq. (1) and 𝑀 = 14 

(dashed blue line); (b) Overlaid: same cepstrally-

smoothed envelope as in (a), and a “band-limited” (red 

solid line) section of the full-band envelope. 

   Fig. 2(b) gives a visual illustration to clarify our approach. 

The marked sub-band interval is seen to contain a band-limited 

section of the full-band envelope, from which follows our 

assumption of a relation between sub-band and full-band CCs. 

This contrasts with the existing approach which generates sub-

band CCs by applying the DCT to every selected sub-region of 

the LMS without direct reference to the full-band domain. 

    We have thus chosen the term band-limited CCs (or BLCCs) 

to reflect our shift of perspective from the existing approach, 

and proposed Eq. (5) to represent 𝑆(𝜔) over a sub-band interval 

[𝜔1, 𝜔2] in a manner analogous to Eq. (1). 

 

𝑆(𝜔(𝜔′)) ≅ 𝐶0
′ + ∑ 𝐶𝑙

′𝑁
𝑙=1 cos(𝑙𝜔′) , 0 ≤ 𝜔′ ≤ 𝜋                   (5)  

Our sub-band CCs are the coefficients  𝐶𝑙
′ of the series in Eq. 

(5), where 𝐶𝑙=0
′  accounts for a possibly non-zero, average level 

of a sub-band. The series’ upper bound 𝑁 is set at about 𝑀 × 𝑊 

(or 𝑀𝑊 in short), where 𝑀 is the vector size for the full-band 

𝐶𝑘 and 𝑊 the ratio of the sub-band’s width to the full frequency 

range. Sections 4.2 and 4.3 of [8] give empirical evidence that 

𝑀𝑊-truncated series can only approximate the shape of the 

spectral envelope within sub-bands. This is why we have stated 

that our sub-band cepstrum is “estimated” from the full-band 

cepstrum, albeit with sufficient accuracy for practical purposes. 

2.2. Change of variables 𝝎 → 𝝎′ 

Our mathematical problem involves two frequency intervals: 

[𝜔1, 𝜔2] for the sub-band and [0, 𝜋] for the full band, the former 

being interior to the latter. To obtain our Fourier-cosine series 

representation on [𝜔1, 𝜔2], a change of variables 𝜔 → 𝜔′ is 

introduced and a one-to-one mapping is established between the 

𝜔-axis and the 𝜔′-axis. This is a standard procedure [12: pp. 

82-85; 13: pp. 286-287] for handling intervals other than [0, 𝜋]. 
 

𝜔′ = 𝜋 [
(𝜔−𝜔1)

(𝜔2−𝜔1)
] ∋ 𝜔 = [𝜔1, 𝜔2] → 𝜔′ = [0, 𝜋]                    (2) 

 

𝜔 = 𝜔1 + [
(𝜔2−𝜔1)

𝜋
] 𝜔′ ∋ 𝜔′ = [0, 𝜋] → 𝜔 = [𝜔1 , 𝜔2]          (3) 

     

    Note that 𝜔′ stretches the sub-band interval [𝜔1, 𝜔2] to the 

full range [0, π] and, by writing Eq. (2) as Eq. (3), 𝜔 is recast 

as the sub-band dependent function 𝜔(𝜔′). Our sub-band 𝐶𝑙
′ are 

then derived via the (well-established) inverse Fourier-cosine 

formulae in Eqs (6) and (7), where 𝑆(𝜔(𝜔′)) is replaced by the 

full-band expansion in Eq. (1) and 𝜔 by Eq. (3): 

 

𝐶𝑙=0
′ =

1

𝜋
∫ 𝑆(𝜔(𝜔′))

𝜋

0
𝑑𝜔′                                                         (6) 

 

𝐶𝑙>0
′ =

2

𝜋
∫ 𝑆(𝜔(𝜔′))

𝜋

0
cos(𝑙𝜔′) 𝑑𝜔′                                       (7) 

2.3. Mathematical verification 

Evaluating Eqs (6)-(7) yields Eq. (10) where sub-band and full-

band CCs are related to one another through a weighted linear 

sum or a linear transformation in matrix form. The weight 

vectors 𝑎𝑙𝑘 in Eqs (11a)-(11c) are trigonometric functions of 𝜔1 

and 𝜔2: 
 

𝐶𝑙
′ = ∑ 𝑎𝑙𝑘 ∙𝑀

𝑘=1 𝐶𝑘,   𝑙 = 0,1, … , 𝑁                                           (10) 
 

𝑎𝑙𝑘, l>0, 𝑙≠𝑘𝑊 = 𝛽𝑙𝑘[(−1)𝑙+1 sin(𝑘𝜔2) + sin(𝑘𝜔1)]           (11a) 

𝑎𝑙𝑘, l>0, 𝑙=𝑘𝑊 =  cos(𝑘𝜔1)                                                   (11b) 

𝑎𝑙𝑘, 𝑙=0           = 𝛾𝑘[sin( 𝑘𝜔2) − sin(𝑘𝜔1)]                         (11c) 
 

where 𝛽𝑙𝑘 =
2(𝑘𝑊)

𝜋[𝑙2−(𝑘𝑊)2]
, 𝛾𝑘 =

1

𝑘(𝜔2−𝜔1)
, 𝑊 = [

(𝜔2−𝜔1)

𝜋
]                                

 

It can easily be verified that 𝐶𝑙
′ = 𝐶𝑘 for [𝜔1, 𝜔2] = [0, 𝜋]. 

3. Summary 

We agree that the context of our SST2022 paper [8] would have 

been more complete with relevant literature on the sub-band 

cepstrum. We have therefore made a diligent attempt to rectify 

this in Section 1 above. We have also paid attention to central 

points raised against our mathematical formulation. We believe 

that the formulation of our sub-band approach continues to hold 

in the light of additional information offered in this response. 
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